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Abstract: 

A brief survey of the various matching techniques available to match the transmission 

line to the Antenna with particular reference to those methods suited to use with Yagi 

style antennas. This part concentrates on the theory of the various matching 

techniques. 

 

Introduction to revised version. 

About 10 or 11 years ago I started to write what was intended to be a series of articles 

for an amateur radio magazine on antenna matching. Due however to some comments 

from various people that they were way too technical the idea got shelved. I had 

however by then written the first one and a bit, so when putting together the 

YagiCAD website I added PDF copies and the associated excel spreadsheets in a 

miscellaneous section to pad the site out. Fast forward to now, while YagiCAD has 

attracted by far the most email traffic, I have also had quite a few positive comments  

on the matching papers, so when I finally got around to taking a position on the great 

Gamma match debate ( I ended up giving up on Dr Balanis and siding with the 

ARRL), and thus needed to redo the match routines in YagiCAD, I also decided to 

revise this what was the first article.   

 

Introduction. 

Some time back I was looking for some information on antenna matching to add in to 

my Yagi design and analysis program YagiCAD (Ref 1), and I found that apart from 

references such as the ARRL Antenna handbook (Ref 2) there appeared to be little 

written recently about the various matching techniques used by Amateurs. In 

particular the ARRL texts were for the main part based on articles written in the late 

60’s and early 70’s (Refs 3&4) and were heavily biased towards the use of graphical 

methods such as Smith Charts and published curves.  Whilst these techniques are just 

as valid today as then, they didn’t really give me a good feeling for what it was that I 

was trying to do when matching an antenna.  Having gone to the trouble of 

researching this topic and doing the several pages of mathematics involved I thought 

that perhaps other Amateurs might be interested in some of the results. These results 

are of course basically the same as those found in other references but by use of the 

computing power available to the average Ham on his personal computer today, 

perhaps more insight is available. 

 

Basic Antenna Model 

The basic antenna, or antenna element, can be modelled as a resistive component in 

series with a reactive one. The values, and sign in the reactance case, vary with 

frequency, element diameter, length, and spacing to other elements or ground, but for 

a particular antenna at one frequency they can be considered constant.  How you 

determine these values is another matter, about which we shall discuss more latter, but 

for the moment we will consider the simple fixed case.  An example is shown in   

Figure 1 Physical, and Figure 2 Equivalent Circuit.  



 

 

 

 
Figure 1 - Physical Driven Element 
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Figure 2 - Circuit Model 

 

 

 Here we see a dipole element (in this case a part of a three element Yagi array from 

Yagicad) which has an input impedance of 20.07 Ohms resistance (Ra) in series with a 

negative or Capacitive reactance of 9.98 Ohms (Xa) . Mathematically we would write 

this as the complex impedance: 

 88.907.20 jjXRZ aain  

Where 

1j  

 

In a real world case of course the value of Ra would be made up of the radiation 

resistance (where the power is dissipated into radiating waves in the transmitting case) 

and a (hopefully small) value of material loss due to non-ideal conductors. For the 

purpose of the simplistic analysis here we will assume this loss component is zero. 

 

It is worth noting here the effect that varying the element length will have in the most 

common case where the antenna element is about one half wavelength long. At 

exactly one electrical half wave long the element is said to be resonant and has Xa 

equal to zero. Slightly shorter than this is said to be below resonance and will produce 

a negative or capacitive reactance value for Xa, slightly longer is above resonance and 

will produce a positive or inductive reactance. The value of Ra tends to be less 

dependent on length and more dependent on spacing to other elements and the like. 

 



What is a Match? 

For my purposes here I am defining a match as something which will have a VSWR 

as close as possible to 1 to 1 at the antenna transmission line interface.  With a 

transmission line impedance of Ro Ohms the VSWR for our model element is as given 

by : 
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The simplest sort of match would be one where we have arranged for  to be 0 ie. the 

VSWR is one. We could do this by having the intrinsic impedance of the transmission 

line equal to the resistive component of the antenna impedance and with an antenna 

reactance of zero, ie. resonance. While it is reasonably easy to achieve resonance by 

just shortening or lengthening the antenna element, the value of Ra is not so simply 

varied, even using genetic techniques. This is especially true as the number of 

elements on a Yagi is increased, especially if you are trying to optimise other factors 

such as gain at the same time.  Values for Ra of below 30 Ohms, ie. well under the 50 

Ohms of commonly available transmission lines, are the norm.  We could of course 

just add some resistance in series to make this up but apart from exceptional cases 

were broad-banding is more important than efficiency (power absorbed by this 

additional resistor is dissipated as heat) this is usually not done. There is of course 

also the question of balanced versus unbalanced transmission line and load but we 

will leave that complication for a bit later and for the moment assume everything is 

balanced. 

 

 

The Discrete L ( a.k.a. Beta), Discrete C, and Hairpin Match. 

The simplest matching method that would normally be called such, and that is 

commonly used, is to place a reactance in parallel with the antenna. The addition of 

this reactance apart from any resistive or dielectric losses in the inductor or capacitor 

will not lower the efficiency of the antenna, but will to some extent step up the 

effective value of Ra as seen by the transmission line. The physical and circuit model 

for this case would be as shown in Figure 3 and Figure 4. 

 



 
Figure 3 – L Match for Za = 20.58 –J9.99 
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Figure 4 - Circuit Model 

It should be noted that, because using a shunt inductor is the most common, the 

figures here show the shunt as inductive and the antenna reactance as capacitive. The 

analysis here however will be kept general and is equally valid for the case of an 

inductive antenna and capacitive parallel reactance.  

 

It makes the mathematics easier if we consider the input admittance rather than 

impedance, which in this case can be shown to be: 
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A little bit of rearranging and separating into real and imaginary parts gives:  
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In the case we are aiming for, the reactance will be zero, which is true for either 

impedance or admittance, and the input impedance should equal the impedance of the 

transmission line, so assuming we arrange things to be at this optimum matching point 

then we can come up with some interesting results: 
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Equation 3 

  

 

These equations let us draw a number of conclusions: 

1. Equation 1 tells us this is a step up only situation with the amount of step up being 

proportional to the magnitude of antenna reactance squared, if the element is 

resonant, ie Xa = 0, there is no step up, and no match.  

2. Equation 1  and Equation 2 tells us this match won’t work if Ra is greater than Ro. 

3. Equation 2 gives us the optimum value for Xa, it tells us that for given values of 

Ra and Ro there are only two possible values of Xa which will allow a perfect 

match. If Xa is not right then this match cannot be perfect, irrespective of Xm. 

4. Equation 3 tells us what Xm we will need to complete the match and also that a 

negative Xa will require a positive (Inductive) Xm and a positive Xa will require a 

negative (Capacitive) Xm. 

 

 

In our example (Figure 3) using these equations the reactance value of the antenna 

element is not high enough at the moment to allow a match to 50 Ohm transmission 

line.  Ie. from Equation 1 with the values shown the best obtainable Ro would be: 

 

𝑅𝑜 = 𝑅𝑎 +  
𝑋𝑎2

𝑅𝑎
= 20.58 +  

−9.992

20.58
= 25.43 

 

The best Ro of just over 25 Ohms leads to the VSWR as indicated by YagiCAD as 

just under 2:1.  

 

Again forget about the unbalance for the moment.  We could shorten the element to 

raise this value, but this may also effect the Ra value, and possibly affect the overall 

antenna performance, ie. gain and pattern.  Doing this by cut and try on a real antenna 

could be quite time consuming and possibly ultimately a waste of time. This is why 

some sort of computational model of the antenna where you can easily try these things 

without having to build it really helps out.  In this case using Equation 2 above gives 

an optimum version of Xa. We can then use something like YagiCAD to vary our 

yagi ( shorten the driven element) to achieve this value. This process is iterative as 

shortening the driven element as well as increasing the reactance (Xa), also changes 

the radiation resistance (Ra), in this case decreasing it. This decreased value of Ra 

then leads to a new optimal value for Xa which again requires varying the length of 



the driven element and so on. YagiCAD has an option to just keep doing this until the 

VSWR is reasonable (the auto adjust option). This was done in Figure 5 and you will 

see that the value of Xa we ended up with was -23.31 Ohms with an Ra of 16.1 Ohms 

(which is somewhat decreased from our original value of 20 Ohms)  

 

 
Figure 5 - Optimal L Match Physical 

We can see that the VSWR now obtained is at a very reasonable value of 1.003:1. 

We can see that slightly decreasing the element length has increased the reactive 

component, and decreased the resistive component. Luckily it has also had minimal 

effect on Gain and Front to Back, so we could just stick with this and build it using a 

coil of 0.017uH. This match is a discrete L match, which is sometimes also called a 

Beta Match. In some cases, especially at VHF, it may not be physically desirable to 

wind a discrete coil, in this case we could simulate this inductance using a short 

section of shorted parallel wire transmission line, called a stub or in this case more 

usually called a hairpin. For a section of shorted parallel wire transmission line of 

electrical length less than one quarter wavelength the impedance at the open end will 

be inductive and given by the formulas below. 
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where; l =  length of stub,  = Wavelength, S = Centre to centre spacing of the two 

parallel wires, and d = the wire diameter, all in metres.  

Applying these to the example here gives the Hairpin match shown in Figure 6. 

 



 
Figure 6 Optimal Hairpin Match Physical 

 

It is worth noting again that while we have shown inductive shunt matching here 

exactly the same thing would be possible (with a positive value of Xa) with a 

Capacitive shunt either formed of a discrete capacitor or Open (as opposed to shorted) 

transmission line, or set of physical plates. 

 

 

For completeness and because we will need it later we should also continue the 

mathematical analysis of our model ( Figure 4) to get the more general case of the 

resultant input impedance, which after considerably more manipulation and separating 

into real and imaginary components can be shown as: 
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Equation 4 

 

Which if again we set Rin to the required input impedance Ro and only consider the 

real component, we can then arrange this into a standard quadratic form for Xm .  

 

(𝑅𝑜 − 𝑅𝑎) ∗ 𝑋𝑚
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Equation 5 

 

Which can be solved for Xm using the normal quadratic formula using: 

 

𝑋𝑚𝑂𝑃𝑇 =
−𝑏 ± √𝑏2 − 4 ∗ 𝑎 ∗ 𝑐 

2 ∗ 𝑎
 

 

Where 

 

𝑎 = (𝑅𝑜 − 𝑅𝑎) 

𝑏 = (2 ∗ 𝑅𝑜 ∗ 𝑋𝑎) 

𝑐 = (𝑅𝑜 ∗ 𝑋𝑎
2 + 𝑅𝑎

2 ∗ 𝑅𝑜) 

 

  



 

What to do if you can’t get the right value of Xa. 

To illustrate what we are doing here let us consider the general case, of Equation 4. 

and what happens to the input impedance as the value of Xm varies. This is shown 

graphically in Figure 7 and Figure 8 derived using an MS Excel spreadsheet (Ref. 5. 

(Xmatcha.xls)) 

 
Figure 7 - Graphs of Rin and Xin versus values of Xm for the initial case Ra = 20.2, Xa= -9.98 

 

Note the blue line which is the calculated input resistance which in Figure 7 you will 

see never gets to the required Ro value no matter what value of Xm is used.  In fact 

the highest or closest we get in this case is the about 25 Ohms (as per the above 

calculation and the approx 2:1 VSWR as found by YagiCAD earlier). 

 

In Figure 8. We see the case where we have varied the Xa (and thus Ra) to get what 

we called an optimal match.  

 

 
Figure 8 - Graphs of Rin and Xin versus values of Xm for the optimal case Ra = 16.1, Xa= -23.3 

Note that in this case the blue line is just touching the required 50 Ohms level just as 

the pink reactance line crosses zero. This is the Optimal case.  This corresponds to a 
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reactance value of the matching component of some 34 Ohms which at the frequency 

of interest, leads to the 0.017uH lumped L or hairpin as previously shown.  

 

To explore other types of matches let us consider the case of the above antenna if for 

some reason we wanted to match to, say, 40 Ohms. In this case from Figure 8 we can 

see that the Rin component crosses 40 Ohms in two places at approximately Xm = 25 

and 53 Ohms. The problem here is that in both of these cases there is a non-zero value 

of input reactance of approximately Xin = +20, and – 20 Ohms respectively. If we 

wanted to stick with the values of antenna impedance we had here then what we need 

to do is to pick one or the other of these value pairs and cancel out the unwanted 

reactance. For practical reasons if we wanted to actually achieve this match we would 

probably pick the smaller value of Xm leaving a reactance of +20 Ohms to be 

cancelled out. In this case the simplest way to cancel this out would be by using a pair 

of series capacitors each of reactance –10 Ohms, one coming from each side of the 

shunt Inductor going to the transmission line.  We need to split the capacitance into 

two to maintain the assumed balance of our transmission line. The resulting circuit is 

illustrated in Figure 9. 
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Figure 9 - Resulting circuit showing cancelling Capacitors. 

 

In this special case, even if we cannot get the right antenna reactance value it is still 

possible to obtain a match by the addition of further matching components.  These 

additional reactive components, again assuming low dielectric losses etc., will not 

adversely affect the efficiency of the match at the actual frequency of design. 

However all of these extra components have frequency dependant reactance, the 

resultant circuit has a Q, and is actually in this case a high pass LC filter.  

 

 

The Gamma and Tee Match. 

In the preceding section we saw that under some circumstances the addition of simple 

series components could make a match when it was otherwise not possible. The 

practical problem is that usually we need much higher step-up ratios to make this 

work with real transmission lines and there is a limit to how far we can go with just 

shortening or lengthening the element to make the antenna reactance bigger. The way 

to get higher step-up ratios is to use some form of transformer action. While discrete 

broad-band transformers can be made or bought, this approach is rarely used outside 

of receiving only antennas because of saturation problems even at low power levels. It 

is also possible to use a transmission line quarter wave transformer but this is limited 

in its usefulness by the small number of values of transmission line impedance 

commercially available. You can of course make your own but this can get 



mechanically difficult. The most common method used to provide a transformer 

action is to introduce a wire or equivalent additional element parallel with, and in 

close proximity to, the radiating antenna element so as to form a section of 

transmission line.  If this is done on only one side of the driven element dipole we call 

it a Gamma match (the Greek letter Gamma is an upside down L), if it is on both sides 

we call it a Tee Match. Both of these cases have the additional advantage of not 

requiring the antenna element to be broken in the middle leading to a mechanically 

stronger antenna. Also if only one side of the element is treated in this way the match 

removes the need for some form of unbalanced to balanced transformation if an 

unbalanced form of transmission line such as coax is used. 

 

The single biggest problem with this sort of matching technique is that the only 

practical way to model it is to reduce it to an equivalent lumped element model 

similar to those above. This is a problem because clearly the Gamma or Tee arm is 

actually going to be part of the antenna radiating system and will by its presence have 

some effect on the antenna properties, which in turn will affect how good a match we 

have. In practice while the lumped matching model shows good alignment with real 

world builds for real lumped elements such as coils or capacitors, in the case of the 

Gamma and Tee the results obtained should only be treated as a rough guide. In fact 

even the Gamma models given below are subject to debate with fundamental items 

such as should the antenna impedance be halved or not, with some texts going one 

way and others the other. For the models below I have sided with the current ARRL 

antenna handbook, as that approach I have found produces results closest to some 

special case tests I have done with NEC2. See the appendix for some example 

comparisons. 

 

 
Figure 10 - TEE No C 

 
Figure 11 - TEE Match 

 
Figure 12 - Gamma No C 



 
Figure 13 - Gamma Match 

  

 

These sorts of matches are diagrammed in Figure 10 to Figure 13, which show both 

the common form of the Gamma and Tee matches, which have the series capacitors, 

and the less common no C forms. 

 

If we analyse the standard Gamma shown in Figure 13, the equivalent circuit model is 

as shown in Figure 14 .  
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Figure 14 - Gamma Match Equivalent Circuit 

 

 
 

As can be seen the gamma arm provides both a current transformer action, while also 

providing a value of effective shunt inductance.  This circuit can be simplified 

Some texts suggest that the Gamma match should be based on halving the Ra 

and Xa values. The model above however is based on what appears in both the 

later editions of the ARRL antenna handbook, and the included 

GAMMA.EXE program. 

 

While NEC2 models have known problems with close spaced structures with 

dissimilar diameters, it is still possible to model some examples of special 

cases of Gamma matches (equal diameters and reasonable 

spacings/alignments). This NEC2 modelling, in my case at least, supports the 

proposition that leaving the values of Ra and Xa not halved for the Gamma 

case produces results that have better agreement between the simplistic model 

used in this paper and the more complex NEC2 models.  Because however of 

the known NEC2 limitations in the more general case, (of closer spacings, and 

different element diameters,) as mentioned before we do need to make use of 

this more simple, but more universally applicable model. See Appendix for 

examples of this. 



somewhat by evaluating the impedance marked as Z2 in Figure 14 to give the version 

shown in Figure 15. 

 

 

Cg

Xg

Ra

Xa

Z1

Zin



 
Figure 15 - Gamma taking into account the transformer action 

 

If we compare this with Figure 4 and the equations which followed we see that we 

have increased both the effective value of antenna reactance and the antenna 

resistance, both of which should make it easier to obtain a match to real world 

transmission lines. 

 

In this form this equivalent circuit can be seen to be identical to the beta or L match 

case but with the antenna driven element impedance being stepped up by a factor of 

(1+α)2. As such the previous equations still apply with the addition of this step up 

factor. 

 

For example Equations 1-3 can still be applied with substitutions of: 

Xm Xg 

Ra  (1+α)2*Ra 

Xa  (1+α)2*Xa 

 

In the case of Equation 1-3 we have also assumed a zero reactance for input as well, 

so in this case we are actually looking at a special case of the Gamma match without 

the need for a series capacitor.  This is a perfectly valid possibility, if not often used 

because of the limited range of antenna impedances it is workable with, in the 

YagiCAD case this is known as a “Gamma no C” match.  

Note as per Equation 2 above with the gamma substitutions for a no C match to be 

workable the following condition must be met: 

 

𝑅𝑎 ≤  
𝑅𝑜

(1 + 𝛼)2
 

 
Equation 6 

 

The (1+α)2 step up factor can be found using: 
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where 
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R = Radius of the Driven Element, r = Radius of the matching Arm, S = Centre to 

Centre spacing of the Element and Arm,  = Wavelength, l = length of Gamma arm. 

All in Metres. 

 

The other cases such as the Tee can be similarly analysed and a similar result 

obtained. See Figure 16. The equations turn out identical except for the Xm = Xg = 

2xXt ie. twice the inductive reactance. In effect a Tee match is simply two Gamma 

matches one on each side, effectively feed in series.  

 

 
Figure 16 TEE Match Model Circuit 

 

While the step up factor (1+α)2  looks complicated it is worth while looking at a few 

particular  cases to give some guidance. If the arm and element diameters are the same 

then independent of the spacing the step up factor always works out to be exactly 4. 

Which is perhaps what we would have expected from the case of the folded dipole 

which is in itself just a special case of a TEE no C where the arm length = element 

length/2.  We can see this in Figure 17 for three cases of U which is effectively the 

radius of the antenna element relative to the radius of the match element. Ie. the U=1 

case is the one we have already discussed where when the arms are the same the step 

up = 4 irrespective of the spacing. U = 0.5 means the element radius is half of the 

match arm radius (the match arm is 2 times the size of the element), U = 1.5 means 

that the element radius is 1.5 times the radius of the match arm. The spacing is also 

measured here in units of match arm radius.  
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Figure 17 - Step Up Factor 

So we can see that to get step ups less than 4 the match arm needs to be fatter than the 

driven element and to get numbers greater than 4 the match arm needs to be thinner 

than the driven element. Even with this however there is not a great amount of 

variation in the step up ratio. 

 

If we were then to again look at Equation 6 and taking the usual case of the required 

Ro of 50 Ohms, and a typical step up of 4, then we can see that the Gamma no C case 

is restricted to instances where the Ra value is less than 50/4 = 12.5 Ohms. Which is 

of course possible in some cases where you have gone for high gain, but mostly these 

days designs target higher values of Ra than that.   

 

The design procedure for the more usual Gamma match with the capacitor is to: 

1. Substitute the following in Equations 4 and 5 

 Xm Xg 

 Ra  (1+α)2*Ra 

 Xa  (1+α)2*Xa 

2. Solve for Xg using the quadratic, of Equation 5, and the equation for α above, 

with values chosen for element diameters and spacings. 

3. Using calculated Xg to obtain the length of the arm from the tan and Zo 

equations above. 

4. Substitute back into the imaginary part of Equation 4 to obtain the residual 

reactance. 

5. Cancel this reactance out with the opposite signed series reactance (usually a 

capacitor).  

 

 

If we now have a look at this graphically with our original antenna element and taking 

some arbitrary values for the diameters and spacings we come up with the graph in 

Figure 18. (using Ref 5. (Gmatcha.xls)) 
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Figure 18 Zin for the Gamma Match case Za = 20.02 - J9.96, Diams = 10mm, S = 30mm 

 

Physically this will look like Figure 19.  

 

 
Figure 19 - YagiCAD calculated Gamma Match 

 

In Figure 18 we see that a match to 50 ohms is available ( Blue line crosses Orange 

line) at an arm length of approximately 0.05 wavelengths but at this point we have a 

residual reactance of about 50 Ohms ( Pink line) which must be cancelled out with 

some series C of –50 Ohms. There is also a match point out at greater than 0.2 

wavelengths but this would require series inductance to cancel out the residual 

negative reactance, and in this case this second length would probably be greater than 

that of the driven element arm (typically around 0.25 Wavelengths).  

 

 A close look at this curve shows why can sometimes be difficult to adjust a gamma 

match. Even small changes in the arm length can lead to big changes in the reactance. 

This means you would then have to correspondingly adjust the series capacitance 
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before a reasonable VSWR would be obtained. The two adjustments would be 

interactive and you would end up having to do a series of iterations, with the chances 

of missing a VSWR dip being reasonably high. A worse case would be if you were 

trying to match to over 100 Ohms, where it can be seen that no matter what you did 

with the C or arm length with this set of values you could never obtain a good match. 

 

The above curve is based on a negative value of antenna reactance, the Gamma match 

will also work if the reactance is positive. Figure 20 gives a graph of this case. 

 

 
Figure 20 - Gamma match curve with +ve Reactance 

 

Driven Element 
  

Matching Arm 
  

Required Trans. Line 

 
Ra(Ohms) 15 

  
Diam(M) 0.0127 

  
Ro (Ohms) 50 

 
Xa(Ohms) 3 

  
Space(M) 0.03 

   

 
Diam(M) 0.0127 

         

 

From this graph we see that there is indeed a match point out at 0.135 wavelengths 

with a residual reactance of some 26 Ohms. What we can also see from the graph is 

that this Gamma arm length is much longer than in the negative antenna reactance 

case but that the residual reactance is much more well behaved and would probably 

require much less iteration to get a good match. An examination of a number of other 

cases shows this as a general trend ie. Negative values of Xa produce the shortest arm 

lengths and have the option of an ideal value (which will require no series C) but 

conversely if there is uncertainty on the impedance, the adjustments will be more 

fiddly. As the antenna reactance moves down to zero (ie resonance) and through to 

positive values the arm length gets longer and the cancelling C becomes better 

behaved. 

 

 

The Omega Match 

Another variation on this theme is the Omega Match which has some shunt C as well 

as the series C .  If you do the math you see that the main effect of the shunt C is to 
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enable the same match to be made with less effective inductance and thus shorter 

lengths of Gamma Arm. Most of the time this is not an advantage unless you are stuck 

with a positive value of antenna reactance which requires arm lengths greater than the 

half-length of the element itself. It can however occasionally save a bit of rework if 

you have a Gamma match that just won’t come in. If you then just temporarily tack 

the additional capacitor on, and the match then works, this is a sign that the reactance 

may be a bit more positive than you had designed it to be and you can either leave the 

C there or shorten the element a bit. Using our example element again a nominal 

Omega match could be as shown in Figure 21. 

 

 
Figure 21 - Omega Match example 

 

With the matching graph from reference 5 (OMatcha.xls) shown in Figure 22. 

 
Figure 22 - Omega Match Curves 

 
Driven Element 

  
Matching Arm 

  
Required Trans. Line 

 
Ra(Ohms) 20.58 

  
Diam(M) 0.00423 

  
Ro (Ohms) 50 

 
Xa(Ohms) -9.99 

  
Space(M) 0.0158 

    

 
Diam(M) 0.0127 

  
C2(pF) 10 
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Conclusions . 

Hopefully this article will have helped to remove a few of the mysteries surrounding 

the area of matching the line to the antenna. The idea here is not so much that people 

necessarily need to be able to calculate things from first principles. With some idea 

however as to what is happening inside the match, people should be less likely to 

waste hours working on a match design that could never have worked with that 

antenna. 
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Appendix. - Some NEC2 comparisons 

 

Step 1. A Straight dipole. 
A simple straight dipole is modelled using a NEC2 based engine (4NEC2) in free 

space to get the nominal input impedance which will be the Ra + jXa value for these 

tests. 

For convenience I have chosen to do this at a frequency of 299.8MHz as this works 

out that the wavelength is exactly 1 metre. ie. the dimensions in metres are then also 

the dimensions in wavelengths. This is done with a length that is close to resonant and 

a radius of 1mm (diameter 2mm, or 0.002 wavelengths). This model is represented in 

Figure 23. 
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Figure 23 Straight Dipole Model. 

When run this model in 4NEC2 with a F= 299.8MHz, L/2 = 0.236m( ie. L = half 

wave dipole), and radius = 0.001m, we get a value for Za of 70.8 – j 4.06  , which is 

basically what textbook theory for a classical thin half wave dipole would have 

predicted. 

 

Step 2. Model of a Gamma Arm on the Dipole, all elements equal 
radius = 1mm, spacing = 25mm 
 

The next step was to make a NEC2 model of a Gamma Arm on the Dipole from step 

1.  This basically looks like Figure 24.   

 
Figure 24 Gamma Arm NEC2 Model 

The model parameters were set up as per step 1 ie. F = 299.8MHz, Free space, Dipole  

L/2 = 0.236m, rad = 0.001m. The Arm spacing is fixed at 25mm and arm diameter is 

the same as the Dipole. There was a variable defined for the arm length so that the 

model could be rerun several times with different arm lengths. 

The following results were obtained: 

Arm 
Wavelengths  Zin G (Nec2) 

0.01 1.98+53.9j 



0.02 8.12+84.5j 

0.03 19.4+114j 

0.04 37.6+144j 

0.05 64.7+173j 

0.06 103+200j 

0.07 152+217j 

0.08 210+219j 

0.09 267+199j 

0.1 311+161j 

0.11 334+115j 

0.12 338+71.4j 

0.13 330+37.6j 

0.14 316+14.8j 

0.15 300+1.48j 

0.16 286-4.56j 

0.17 274-5.43j 

0.18 264-2.72j 

0.19 258+2.48j 

0.2 254+9.44j 
Table 1- Gamma Results from NEC2 

Step 3. Model of a Tee Match on the dipole, all elements equal radius 
= 1mm, spacing = 25mm 
 

 
Figure 25 Tee Match NEC2 Model 

The model parameters were set up as per step 1 ie. F = 299.8MHz, Free space, Dipole  

L/2 = 0.236m, rad = 0.001m. The Arm spacing is fixed at 25mm and arm diameter is 

the same as the Dipole. There was a variable defined for the arm length so that the 

model could be rerun several times with different arm lengths. Note the arm length in 

the table below is the length of one side or half the overall Tee length to facilitate 

comparisons with the Gamma case. 

The following results were obtained: 

 

 



Arm 
Wavelengths  Zin T (Nec2) 

0.01 7+74.7j 

0.02 32.6+137j 

0.03 82.6+201j 

0.04 166+262j 

0.05 290+303j 

0.06 450+291j 

0.07 600+194j 

0.08 675+33.5j 

0.09 656-118j 

0.1 584-214j 

0.11 502-257j 

0.12 432-265j 

0.13 378-252j 

0.14 336-230j 

0.15 306-203j 

0.16 285-173j 

0.17 270-142j 

0.18 260-111j 

0.19 255-79.6j 

0.2 254-47.4j 
Table 2- TEE results from NEC2 

Step 4. Compare NEC2 results to the Lumped/TL Model predictions. 
 
The results are simplest compared in graphical form. The Gamma case is shown in 

Figure 26 and the Tee case in Figure 27. 

 

 



 
Figure 26 Graph of Gamma NEC2 results vs TL model predictions. 

 

 
Figure 27 Graph of Tee Nec2 results vs TL Model 
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